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An important property of the classical Boltzmann equation is that kinetic 
energy is conserved. This is closely connected to the fact that the Boltzmann 
equation describes the nonequilibrium properties of an "ideal" gas. Generaliza- 
tions of the Boltzmann equation to higher density involve, among other things, 
allowing the colliding particles to be at different positions. This spatial non- 
locality is known to contribute to the density corrections of gas transport 
properties. For soft potentials such a spatial separation of the particles also 
leads to a conversion between kinetic and potential energy. In evaluating these 
effects the classical dynamics of the whole collision trajectory must be taken into 
account, involving also the time for the collision process. The resulting time 
nonlocality has usually been reinterpreted in terms of a spatial nonlocality. 
However, for a homogeneous system this is not possible and only the time non- 
locality remains, this then being responsible for the conversion between kinetic 
and potential energy. This paper aims to clarify these properties of the nonlocal 
corrections to the classical mechanical Boltzmann collision term. Comments on 
the corresponding problem for the quantum Boltzmann equation are also made. 
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1. I N T R O D U C T I O N  

Prev ious  w o r k  by the a u t h o r  ~ '  2) on the q u a n t u m  B o l t z m a n n  e q u a t i o n  has  

inc luded  a desc r ip t ion  of  h o w  b inary  col l is ions  can  conve r t  k inet ic  energy  
to po ten t i a l  energy.  T h e  p resen t  w o r k  examines  the classical  a n a l o g  o f  

these q u a n t u m  results. In  the  W i g n e r  func t ion  descr ip t ion  o f  the q u a n t u m  

case it was cleal; m tha t  energy  conve r s ion  is a ssoc ia ted  wi th  the spat ia l  

non loca l i ty  of  the col l is ion,  n a m e l y  tha t  the two  col l id ing  par t ic les  are  
spat ia l ly  separa ted .  This  is in con t r a s t  to the  standard classical  B o l t z m a n n  
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collision term in which the (binary) collisions are treated as occurring, as 
far as their distribution functions are concerned, at one point in space 
and time. For the Boltzmann equation with such localized collisions, the 
complete separation between the effects of collisions and the flow of the gas 
as a whole is responsible for simplifying the description of the nonequi- 
librium behavior to that of an ideal gas. That is, if collisions are treated as 
localized events, then the flow and collisional effects are strictly additive, 
with the collisions formally giving no direct contribution to any of the 
hydrodynamic fluxes and, conversely, the flow processes having no direct 
influence on the outcome of a collision. 

Enskog ~3) was the first to elaborate on the role of collision nonlocality 
in gas kinetic theory. However, he dealt only with hard spheres, for which 
there is no mean potential energy, so the question of a lack of kinetic energy 
conservation does not arise. Bogoliubov (4) and Green ~5) independently 
generalized the Boltzmann equation so as to include density corrections to 
gas kinetic properties associated with the spatial extent of the colliding 
pair. As presumably their objective was to formulate a theory of dense gas 
transport properties, they expressed these effects in terms of spatial gradient 
corrections to the local Boltzmann collision term. Neither author mentions 
the possibility of conversion of kinetic energy to potential energy. Since such 
effects should also occur in homogeneous systems, it is not clear from their 
treatments how such energy conversion could occur via binary collisions in 
a homogeneous system. The present paper addresses this difficulty. 

The hydrodynamic equations of change for a system having arbitrary 
density were first discussed by Irving and Kirkwood (6) as a consequence of 
the classical Liouville equation. For the change of energy density, this 
requires, in particular, the need for considering both potential and kinetic 
energy densities and gives a general expression for the energy flux in terms 
of the distribution functions for the system. A particularly useful organiza- 
tion of these results has been given by Kreuzer ~7~ which is summarized in 
Section 2. Of special interest for the present work, emphasis is placed on 
the rate of conversion between potential and kinetic energy densities. At 
moderate densities, the evolution of a gaseous system is determined by the 
free motion of the particles and with increasing density, the successive 
inclusion of binary, ternary, and higher ordered collisions. The Boltzmann 
equation includes at most binary collisions, which are in general nonlocal 
spatially and timewise. It is well known ~s-~]) that such nonlocalities con- 
tribute to the density corrections of gas transport coefficients. Other 
contributions ~2) to the first-order density corrections are associated with 
ternary collisions and the possible presence of bound states.(~3) These same 
mechanisms can also contribute to the conversion between kinetic and 
potential energies. The present paper does not address the general problem, 
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but rather is aimed at understanding how binary collisions contribute to 
this energy conversion. 

Klimontovich (14) has described the conversion between kinetic and 
potential energy as an aspect of the density corrections to the classical 
Boltzmann equation. His method involves a particular ansatz for the three- 
particle distribution function. While Klimontovich refers to his method as 
a binary collision approximation, the presence of a three-particle distribu- 
tion function can lead to the impression that three-particle effects are at the 
root of such an energy conversion. This is particularly true since energy 
conversion is discussed in his treatment only in the context of the role of the 
three-particle distribution function. A recent article t15) attempts to clarify 
Klimontovich's method, which is similar in philosophy to a quantum 
method by Boercker and Dufty, t'6) by elaborating what is probably the 
physical meaning of the ansatz for the three-particle distribution function 
that they use for deriving the Boltzmann equation. Specifically this article ~15) 
shows in an explicit manner how the structure that is assumed for the three- 
particle distribution function is related to binary collisions. In contrast, the 
present paper shows how kinetic-potential energy conversion can arise 
explicitly in the binary collisions of classical particles, with no role being 
required for the three-particle distribution function. 

Section 2 discusses energy conservation from the point of view of the 
BBGKY hierarchy, c4"17-19) presenting formal equations for the kinetic 
energy production and the various contributions to the energy flux. The 
present treatment is restricted to assuming that the N-body potential is 
pairwise additive. This restriction has the simplifying consequence that 
kinetic and potential energies are described completely by the single and 
pair distribution functions. Binary collision dynamics and the Boltzmann 
equation are introduced in Section 3 using Green's tS) notation, which is 
elaborated in Appendix A. The Boltzmann equation is specialized to treating 
only homogeneous systems, to discuss the conversion between kinetic 
and potential energy for a homogeneous gas via binary collision dynamics. 
Section 4 deals with the general inhomogeneous case. The homogeneous 
and inhomogeneous cases each have their own novelty; in the former there 
is no possibility of spatial nonlocality, so the classic corrections derived by 
Green 15) have to be reexamined (see Section 5) so that both effects can be 
included as corrections to the Boltzmann equation. Section 6 comments on 
Bogoliubov's closure of the BBGKY hierarchy and demonstrates that his 
form for the non.local Boltzmann equation is in general inconsistent with 
energy conservation. It is also noted that the quantum closure that has 
been introduced t21) for deriving the quantum Boltzmann equation has the 
same form as does Bogoliubov's classical closure. Thus energy conversion 
for the (nonlocal) quantum Boltzmann equation is subject to the same 
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constraints as in the classical approach of Bogoliubov. Specifically, neither 
Boltzmann equation describes energy conversion for homogeneous systems. 
Boercker and Dufty t~6~ introduced a "binary collision approximation" for 
quantum systems, essentially similar to that introduced by Klimontovich, t14~ 
which they emphasize ~24) conserves total energy. The classical analog of 
their result is given in Section 6, while the form for the pair distribution 
function deduced from the binary collision approximation is presented in 
Appendix B. Also in Appendix B, it is argued that a first-order in space and 
time nonlocality approximation to this pair distribution function is identical 
to that introduced in Section 5 to get a unified description of energy conver- 
sion for both homogeneous and inhomogeneous cases. The paper ends with 
a discussion, Section 7, which includes a summary of three consistent 
schemes for energy conservation. 

2. EXACT KINETIC E N E R G Y - P O T E N T I A L  E N E R G Y  
C O N V E R S I O N  

The classical dynamics of an N-particle system is determined exactly 
by the Liouville equation 

__ N Of, m Of ~NI Pi Of ~N~ • aVo" 
at ~ rn" Or----Z + (1) i =  1 ~ j  Ori Opi 

Here ri, p; are the position and momentum of particle i, respectively, and 
the particles are assumed to interact via a pairwise additive potential Vo.. 
The function f ( m  is the N-particle phase space distribution function 
ftN)(r~ ..... PN; t) normalized, ~. . .  ~fCN) d r l . . ,  dpN = 1, at each time t to 1. 
It is an immediate consequence of integrating by parts that the mean total 
energy 

U-- f ...  f H(N~ f~N) dr~ . . . dpN 

defined in terms of the total Hamiltonian 

H ~N) = " + V O. 
i=  1 i < j  

is constant. Inherently, both for the normalization and the evaluation of 
the total energy, there is an assumed convergence condition, namely that 
f(N~ vanishes sufficiently rapidly at large distances, for one reason or 
another. Of particular interest are those systems having a large number of 
particles in a large, but finite volume. It is further assumed in this work 
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that ft^,) is symmetric to the interchange of any pair of particles, i.e., that 
Boltzmann statistics is obeyed. Also assumed for simplicity is that the 
particles are structureless and that the interparticle potential is repulsive so 
that it is incapable of supporting bound states. 

Integration over subsets of particles defines reduced distribution 
functions 

f(k) = N ( N _ l ) . . . ( N _ k + l ) f . . . f f , U ) d r k + l  dpN (2) I . . . k  " ' "  

satisfying the BBGKY hierarchy, t4  ̀17-19) whose first two members are 

and 

_ •  f~l)= Pl O f f  OV12 0 
- ~ ' O r l  fil) + JJ Or1 "Opl f ~  dp~ dr~ (3) 

~,,"c")_ Pl 0 p: a -cz) aV12 (0 a "~fC') 
a -'I~ - m Or~ f~) m ~:i~ +~V~" a~1 OPal i~ 

(OV13 a 0V23 0 "~f(3) dp3dr3 (4) +ff\arl op~ + Or2"Op2,} 123 

functions Jl...k are functions of the The k-particle phase-space distribution ~(k) 
position r~ and momenta p~ (i = 1 ..... k) of the k particles with normaliza- 
tion such that its momentum integral (over all k momenta) reduces, for 
k ,~ N, to I-I~= 1 n(r~, t), associated with the gas density n(r, t) at position r 
and time t, when the k particles are all far apart. 

For the particular case of a homogeneous system, f m  is independent 
of position, while fc2) depends on the positions rl and r2 only through the 
relative distance r12 = r l - r 2 .  The rate of change of the kinetic energy 
density nu K = j (p~/2rn) f~ l) dpl for a homogeneous system is thus 

a.u~= fff p~ av1~ a f~, dpl dr~ dp~ 
8t LJJ 2rn 0rl 0pl 

= I:: V.. ,p. ,r.,p. 
Or2 

= --Ill v12Pl" ~-~ 'e~2) dpldr2dp2 
n'/ f~r2 "/ 12 

822/80/5-6-II 
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arl  m ar2J J12 

=~ffIV~2(-~f~2'+~...dr3ots~2 dp3)dp~dr2dp2 
~gi1A V 

- ( 5 )  Ot 
which is minus the rate of change of the potential energy density. 

gild V ~ ~ f f f  VI2 f~2, dpl dp2 dr2 

It is noted that the three-particle term vanishes when integrated over the 
momenta Pl and P2, while the production of kinetic energy density is given 
by the expression 

1 
c:3 +P2"~r~r 2 s12 .1 a x = ~  Vl2 "ar n m 

1 i i i p , 2 . (  OV12"~f,2> = ~ j j j  /2 0rl2 j ,2 dpndr2dp2 (6) 

Here the relative momentum P12 = (/2/m)(Pn- P2) and reduced mass/2 enter 
since the potential is independent of the center-of-mass position R12 = 

(1/2)(rl +r2). The kinetic energy production is recognized as due to the 
product of the intermolecular force and the relative velocity, essentially 
as minus the rate of change of potential energy along the pair particle 
trajectory. 

In the general case when the gas is inhomogeneous there are flux con- 
tributions to the rate of change of the kinetic energy density. In addition, 
the detailed treatment of the pair interaction term is complicated by the 
need to distinguish whether a quantity should be centered at the position 
of a single particle or at the center of mass of the pair. The results of this 
classic calculations (see, for example, the treatment by Kreuzer r are 
summarized here. 

There are a number of auxiliary quantities that first need defining for 
inhomogeneous systems. The gas properties are to be calculated at position 
r and time t; for example, the local gas (number) density is gi(r, t). Other 
quantities are: 

(i) The stream velocity (mass average velocity) 

v(r, t) -- ~ f plf~l)(r, p~ ; t) d p (7) 
gim 
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(ii) The mean kinetic energy per particle 

uK(r, t ) -  1 f (Pl--my)2 f~l)(r, t) dpl 
n ~m P'; 
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(8) 

(iii) The kinetic heat flux 

~m f~')(r, p, ; t) dp, (9) 

(iv) The kinetic pressure tensor 

PK(r,t)=-f(~-v)(p,-mv)f~')(r,p,;t)dp, (1o) 

These are all defined relative to the stream velocity. With these definitions 
the kinetic energy equation of change is obtained from the first BBGKY 
equation (3); explicitly, we have 

allU K 
at + V.(nuKv+qlc)+PK: Vv 

II~ av '2  p' - mv f~)(r ,  Pl, r2, P2; t) dr2dp2dp~ 
= - -  JdJ ~ " m 

= - V . q c o , - W v  : Vv+crK (11) 

The potential interaction term is written out for reference so it can be 
compared with equations that will be discussed later. Its reduction into 
identifiable physical quantities involves symmetrization between the two 
interacting particles, with the exact pair particle property definitions being 
as follows: 

(v) The collisional contribution to the kinetic heat flux, given by 

1 ;fj'j'. aV12 pl -I- p2--2mv 
q~o.-- --~ rl2 ar]2 m 

-I  ~ rl2 f(")(rl,  Pl, r2, P2; t) d,l dr I dp2 dr2 dp2 (12) 
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(vi) (The transpose ' of) the collisional transfer pressure tensor 

Snider 

with 

(ix) The potential energy heat flux 

1 

qv- ffff 
xVi2~(r--r l) f (2)(r l ,pl ,r2,  p2;t) drldpldr2dp2 (17) 

These exact equations demonstrate the form for the conversion between 
kinetic and potential energies to give energy conservation. 

3. B O L T Z M A N N  EQUATION DESCRIPTION OF KINETIC 
ENERGY-POTENTIAL ENERGY CONVERSION IN A 
CLASSICAL H O M O G E N E O U S  GAS 

Kinetic energy conservation (or lack of) is now discussed for a 
homogeneous system, but from the point of view of the classical Boltzmann 

I ffff r 0V12 Pv---~jjjj 12 0--~12 

x 6 r - -Rl2- -~r l2  f(2)(rl,pl,r2, p2; t )d2drldpldr2dp2 (13) 
--1 

(vii) The production of kinetic energy 

aK=-- --~ '0r l2 

x 6 ( r - r l )  f(2)(rl, pl, r2, p2; t) drl dpl drzdp2 (14) 

Since the kinetic energy is not conserved, it is appropriate to examine: 

(viii) The potential energy density 

1 n.v- jjjj V12~(r--rl) f(2)(rl, Pl, r2, P2; t) dr1 dpl dr2 dp2 (15) 

localized here so that half the potential energy is at the position of each of 
the particles. The equation of change of the potential energy density is then 

Ol'lU v 
= - -V . (nuvv+qv)- -aK (16) 

Ot 
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equation. The approach followed here draws on Green's classic work. (s) In 
classical mechanics, an isolated binary collision implies via Liouville's 
theorem for the isolated pair that the phase space pair distribution function 
satisfies 

f(Z)(rl, Pl, r2P2; t) =f~2)(rlo, Plo, r20, P20; to) (18) 

Here the positions and momenta at time to are determined by Hamilton's 
equations from their values at time t. If to to be a time prior to a collision 
[in practice set as the time when the particle separation is equal to the 
(assumed finite) range of the potential ro], the Stosszahlansatz for the 
Boltzmann equation assumes that at the precollision time the pair distribu- 
tion function factors into a product of singlets. For the present discussion, 
the gas is spatially homogeneous, so that there is no position dependence 
of the singlets and the pair distribution function can be written, taking into 
account only isolated binary collisions and the Stosszahlansatz, 

f(2)(r], Pl, r2, P2; t )=  f(t)(plo; to) fcl)(p2o; to) (19) 

The standard Boltzmann collision term is obtained by ignoring the dif- 
ference in times to and t in the product of singlet distribution functions. 
This can be rationalized on the basis that the distribution functions vary 
slowly with time, while t - t o  is a short time, namely of the order of the 
mean time of duration of a collision. With this approximation the first 
BBGKY equation (3) for a spatially homogeneous system can be written 

0 (1) OVa2 0 t)f(]) " -~ f  (P,; t)=ff  Or12 Op,~f(1)(P,o; . tPzo;t)dp2dr2 (20) 

Here the two replacements (i) ofOVlz/Or I by OVl2/Orl2, since the potential 
depends only on the relative coordinate, and (ii) of 0/0pl by 0/0p12= 
0/c3pl-0/0p2, valid since P2 is integrated over and the resulting surface 
integral vanishes because the distribution functions vanish for large 
momenta, emphasize that the quantities in the integrand are really 
associated with relative (collisional) motion. Green (5) recognizes, as does 
Klimontovich, ~14) that the only dependence on relative position and 
momentum in the product of singlet distribution functions is through Plo 
and P20 and that these are collisional invariants. Any collisional invariant 
satisfies Eq. (A.1) [see Appendix A], so that 

OVlz'O--~f~l'(Pl~ t)f(t)(P2~ t)=P12/~ 0~-12 f(l)(pl~ t)fC"(P2~ t) (21) 
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Integration over the relative position r~2 gives for this term a surface 
integral whose evaluation leads to the standard Boltzmann equation for a 
homogeneous gas 

o~f(l)(pl; t )= f f f  [fli)(plo; t)f(])(p2o; t) 

-- fn)(pl; t) f")(p2; t) ] P-~ b db de dp2 (22) 

The impact parameter b and angle �9 describing the orientation of the plane 
of the collision are defined, for example, in ref. 20. As is well known, this 
collision term conserves kinetic energy. Since this term is obtained by 
dropping the time difference t -  to, this reflects how the classic Boltzmann 
equation depends on collision instantaneity (time locality) for kinetic energy 
conservation and so implies the gas is ideal. 

Retention of to as the time for the evaluation of the singlets in Eq. (20) 
reflects the finite time duration of the collisions. It is this effect which gives 
rise to conversion of kinetic and potential energies. Specifically the density 
of kinetic energy production is, for a homogeneous gas, equal to the rate 
of change of kinetic energy density. This is calculated from the first 
BBGKY equation according to [derived using the first line of Eq. (5) 
together with Eq. (19) ] 

f f;p~OV]z 0 f~l)(plo;to)f(1)(p2o;to)dr2dpzdp 1 (23) aK= 2m Ort2 0pl~_ 

It is to be stressed that this vanishes if to is replaced by t, since then the 
integral becomes equivalent to the kinetic energy production of the standard 
Boltzmann equation (22), which vanishes. Thus the nonvanishing of 
Eq. (23) is necessarily associated with the appearance of to in the distribu- 
tion functions. For a homogeneous system the integral over the position of 
particle 2 is equivalent to integrating over the relative position r]2 and the 
individual particle momentum integrals can be replaced by center-of-mass 
P~2 and relative P12 momentum integrals. By particle symmetry of the 
integral, the kinetic energy of particle 1 can be replaced by 

Pl2 --* 1 [P~2+ P~2 ] (24) 
~L~ ~-m~J 

Now integration by parts, both with respect to r12 and P~2 gives 

1 a aK=  fff V12 pI2 f(1)(p~o; to) fH)(P20; to) dr~2dp~2dP~2 
# 0r~2 

(25) 
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The surface integrals vanish, for rl2 because of the potential factor V12 and 
for P12 because of the assumption that the distribution functions vanish 
sufficiently rapidly at large momenta. The singlet distribution functions in 
these expressions depend on r12 only through the initial relative momentum 
Po and the time t o. Only to is not a collisional invariant. For any 
dependence via a collisional invariant, Eq. (A.1) of Appendix A implies that 
the spatial derivative (P12//t). 0/0rz2 can be replaced by the corresponding 
relative momentum derivative (0 V12/0 r 12)" 0/0 p 1,_. The consequent integra- 
tion by parts with respect to the relative momentum results in a surface 
integral in momentum space which vanishes because the distribution func- 
tions must vanish for large momenta. Thus the derivative with respect to 
r~2 in the expression for the kinetic energy production can be limited to 
being taken with all collision invariants constant, denoted by I~. Since the 
"non-collision-invariant" dependence of the distribution functions is only 
through to, Eq. (A.5) can be used to evaluate the derivative with the conse- 
quent result 

1 V P12 Oto 0 ~t) 
t rK=~If l  ,z U "0r~12 ,&o f (Plo; to)/(t'(P2o; to) ctrl~api~dP,z 

= _12 III VIz~-~of'l)(Plo;to)f")(Pz~176 

Onuv 
- Ot  (26) 

The kinetic energy production is thus minus the rate of change of the 
potential energy density 

1 nuv=2 fll V'2f~Ez' dr'2 dP'2 dpl2 

=~ f~'I V, zf")(p,o; to) f'"(Pzo; to)dr,~dP,~ tip,2 (27) 

For the evaluation of the potential energy density the Stosszahlansatz has 
again been used to relate f~2) to the product of singlets before the collision 
begins. In Eq. (26) the derivative with respect to to has been replaced by 
the corresponding derivative with respect to t, which can then be taken 
outside the position and momentum integrals. As stated earlier, the 
method of approach used here was motivated by Green's treatment tS) of 
the corrections to the Boltzmann equation, although the details of the 
treatment are different. But it does demonstrate that only binary collision 
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dynamics is needed for the description (at low density) of the conversion 
between kinetic and potential energy. 

There are some hidden complexities in the interpretation of this work, 
associated with the density dependence of the various quantities. This dis- 
cussion has emphasized that the energy conversion is a binary collision 
process and thus involves only pairs of particles. It is natural to equate this 
with being an expansion to second order in the density, but this is not true. 
First, f " )  itself is a nonlinear function of the density, in particular if there 
is any time dependence (necessarily due to collisions in a homogeneous 
system, which implies that all relaxation rates are density dependent), and 
second, related to that, Of~/Ot is proportional to n 2, so Onuv/Ot is at least 
of order n 3. Thus the classification according to the maximum number of 
particles taking part in some molecular event is unique, but the power of 
the density is not. 

Klimontovich (~4) writes the pair distribution function in terms of an 
earlier time, much as in Eq. (19), but with an extra term arising from his 
assumption about the form for the three-particle distribution function. 
Essentially he carries out an integration by parts which allows the two 
terms to be combined, the result then being expanded in terms of a time 
interval to arrive at the same result as above. One interpretation of the 
present work is to deduce that the introduction of the three-particle term 
in Klimontovich's work is unnecessary. But what should be recognized is 
that there is a difference in philosophy of approach and that the three- 
particle factorization that Klimontovich introduced is the result of the pre- 
vious binary collisions, at least that is this author's understanding "5) of 
Klimontovich's method. Thus no direct comparison of the details of the 
calculation should be made. It is of course this author's opinion that the 
present treatment is simpler, but hopefully, the present discussion at least 
helps to clarify how the conversion between kinetic and potential energy 
occurs during binary collision processes. 

4. CLASSICAL I N H O M O G E N E O U S  GAS 

For an inhomogeneous gas there are, in contrast to the homogeneous 
gas, various flux contributions to the equations of change (see Section 2). 
As well, any quantity depending on a pair of interacting particles is affected 
by the position dependence of the distribution function that enters into the 
calculation of the macroscopic quantity. Specifically the spatial nonlocality 
of binary collisions contributes to the conversion between kinetic and 
potential energy. Here this is discussed within the Boltzmann equation 
description of gas kinetic theory. 
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Within the philosophy of the Boltzmann equation the pair distribution 
function of a colliding pair is determined in terms of the singlet, Eq. (19), 
according to the dynamics of isolated binary collisions and the assumption 
that the pair distribution function factors before a collision. Green ts) 
expands the position and time dependence of the product of singlets to give 
corrections to the time and space local product, namely 

f(2)(r,, Pl, r2, P2; t )=f( t ) ( r lo ,  Pro; to)f(t)(r2o, P20; to) 

= f(t)(rt ,  p~o; t) f~ ) ( r l ,  p2o; t) + At + A ~ (28) 

with 

At =f(t)(rto,  Plo; to)f~t)(r2o, P2o; to)--f(I)(Rt2, P,o; t)f~t)(Rt2, P2o; t) 

0 
~ - ( t o - t ) ~ f t o f 2 o +  f2o(r lo -R t2 ) .V f lo+ f,o(r2o-R~2).Vf2o (29) 

and 

AE-f(l)(R12, Plo; t)fr Pzo; t ) - f " ) ( r t ,  Pro; t ) f~ ) ( r t ,  P,_o; t) 

"~ �89 -- rt ) ' Vftof2o (30) 

For ease of writing, the abbreviated notations 

f jo-~f( ' )(r l ,  Pj0; t) (31) 

for j =  1 and 2 and a/Sr~ = V have been introduced. That all distribution 
functions are evaluated at rl is appropriate since in using the Boltzmann 
equation, all gas properties are evaluated at the position of particle 1, 
namely by setting r t = r .  Clearly the first term of Eq. (28) gives the 
Boltzmann equation, as stressed in the previous section. The correction 
from locality, A2, is solely associated with how the distribution functions 
differ according to whether they are evaluated at their position of center of 
mass Rt2 or at the position of particle 1. At relates to the relative motion 
that the particles undergo during the collision. By expanding to keep only 
those terms that are first order in t o - t ,  r t o -R t2 ,  and r20--R12, and using 
the first BBGKY equation, Green r relates the time derivative of the 
singlet distribution function to the position gradient so that At is simplified 
to 

A~ = �89 + go(t - to)]. [ftoVf,_o - f2oVf lo]  (32) 

where ro and go are the relative position and velocity before the collision, 
namely at time t o where the relative separation of the particles ro is equal 
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to the range of the potential. Other than for the implicit dependence of f:0 
on t and r~ and the explicit dependence on the time interval t - t o ,  A~ 
depends only on collisional invariants. 

Green's tS) method thus allows the Boltzmann collision integral to be 
written as a sum of three parts, Jo + Ji + J2, with Jo the standard collision 
integral [see Eq. (22)] with the singlet distribution functions evaluated at 
r~, while the inhomogeneity corrections Jl and J2 arise respectively from 
Al G and A 2. As discussed in Section 6, Bogoliubov's closure gives a spatially 
nonlocal collision term which is identical to this. The correction due to 
evaluating the distribution functions at the center of mass rather than at 
the position of particle 1 is 

rf o_v._ oa_, 
J2 = J3 Or2, aP21 dr2 dp2 

1 OVi2 0 -- v.ffr2, Or,_----~ Op2---] f'~176 (33) 

while the relative motion contribution is 

OVI2 OA~ 
J' =I f  ar,z " ~pl2 dr2dp2 

1 I~aV,2 0 { [ r o + g o ( t _ t o ) ]  " [f~oVfzo_fzoVf~o]} dr2dp2 
--2 JJ ~12 ~Pl2 

(34) 

The Boltzmann equation with these nonlocal corrections was discussed by 
Green ~5~ for calculating the density corrections for the transport coef- 
ficients. This program was formally carried out by Snider and Curtiss ~8~ 
and has been incorporated into a practical method ~12) of approximating the 
first-order density corrections for the viscosity and thermal conductivity of 
simple gases. 

The equation of change for the kinetic energy density deduced from 
the Boltzmann equation with nonlocal corrections is calculated according 
to 

Onutc+ V. (nuKv + qK) + PK : Vv 
Ot 

_: (P l -mv)  z 
2m (Jo + J1 + J2) dpl (35) 
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The integral involving Jo has no contribution. Evaluation of the contribu- 
tion involving J2 proceeds as follows: 

f (pl--mv) ~/~ J2 dpl 

0VI 2 Of~m~f2~ dr2 dp2 dpl =4~;ff (p'-mv)2V'r2' 0r,2 op2, 

0 V12 aflof20 dr 2 d P2 dpl =~---mfff (P12-2mv)'p'2V'r21 0r,2 0p2, 

=4~fff (p,2_2mv) 0VI2 �9 0r i---- ~ r21 �9 Vfl0f2o dr2 dp2 dpl 

- V  Bo.tz [pBo]t~lt = "qco. -- V j :Vv (36) 

In this series of steps, the second equality arises from particle symmetry, 
the third equality by integrating by parts with respect to P,2 retaining the 
center-of-mass momentum Pt2 constant, and finally recognizing the 
Boltzmann equation equivalent to the collisional heat flux 

. o , o   fff OV'z.(Pt2-2mv)f, of 2odpxdr2dp2 (37) qcolt ----" r12 Or12 

and the collisional transfer pressure tensor 

PavOlt z = 1 OVl2 ;f; r]2 a--~12 flo.f2o dpl dr2 dp2 (38) 2 

These expressions differ from the exact expressions, Eqs. (12) and (13), in 
that each is localized at the position of particle 1 and the pair distribution 
function is determined by the Stosszahlansatz. Within a linear-in-gradients 
approximation these results are thus consistent with a binary collision 
approximation to the corresponding exact expressions. 

The evaluation of the contribution from Jt to the kinetic energy 
equation of change is considered next. Since A~ is symmetric to particle 
exchange, it is appropriate to start by symmetrizing the kinetic energy with 
respect to the two particles. This is followed by two integrations by parts, first 
with respect to P~2 and then with respect to rl2. This sequence of steps gives 

f (P l  Ji dpl 
~ m  V ~ 2 

2m 

['ff (Pl -- mY) 2 0 V~2 ad~ 
dr2 dp2 dpl 

33J 2m Or]2 aP12 
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r/.r [Pi2-2mv)2q_p~2] ~VI2 C~,/I? 
dr~dp2dpl J J J [  8m 2mJ a r l 2 a p l 2  - 

=fff v PI2 aA~ dr2dpzdp ~ (39) ~2 m "c3r~--~_ 

In this form it is appropriate to proceed as in the treatment of Eq. (25) in 
Section 3. For the evaluation of the r12 derivative, any dependence of A~ 
on a collisional invariant vanishes on the basis that Pl2-a/arl2 can be 
replaced by a PiE derivative [see Eq. (A.1)] and a subsequent integration 
by parts with respect to P~2 then gives a surface integral that vanishes 
for large momenta. Since Green's tS~ approximation for zl~ depends on 
non-collisional invariants only through to, t and r~, whose only relative 
position derivative is determined by Eq. (A.5), the J~ contribution to the 
equation of change for the energy density becomes 

inhomog ~ fff aK = V,2go-[AoVf2o-AoVf,  o] dr2dp2dp~ (40) 

Clearly this is not the divergence of some quantity, so is a contribution to 
the production of kinetic energy and has been labeled as such. Moreover, 
it is linear in position gradients and thus will vanish for a homogeneous 
system, hence the "inhomog" label. The exact expression for the production 
of kinetic energy is given by Eq. (14). That involves the exact pair distribu- 
tion function, so it can be seen that the exact expression for the kinetic 
energy production reduces to the above if the ansatz (28) together with 
Eqs. (30) and (32) is used as an approximation for the pair distribution 
function. Since the exact equations of change for the kinetic and potential 
energies are consistent with the overall conservation of energy and the 
expression for the kinetic energy production deduced from the Boltzmann 
equation is consistent with an appropriate approximation for the pair dis- 
tribution function being introduced into the exact expression for the kinetic 
energy production, it follows that the Boltzmann equation expressions are 
consistent with total energy conservation and the conversion between 
kinetic and potential energy densities. 

5. U N I F I E D  CLASSICAL  T R E A T M E N T  

Section 3 has described how the nonlocal (in time) Boltzmann colli- 
sion term gives rise to the conversion between kinetic and potential energy 
for a homogeneous gas, while Section 4 describes this energy conversion for 
an inhomogeneous gas. It is noticed, however, that the expression for the 
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kinetic energy production derived for an inhomogeneous gas vanishes when 
the gas becomes homogeneous. This is inconsistent with the results of 
Section 3, to which the Section 4 expressions should reduce when the 
system becomes homogeneous. The object is now to understand how a 
unified treatment for both cases can be formulated. 

Both cases arise from nonlocal aspects of the Boltzmann collision 
term, so Eqs. (28)-(30) constitute a common starting point. The approx- 
imate evaluation of the time derivative in Eq. (29) as discussed in deriving 
Eq. (32) is where the missing homogeneous term is lost. Essentially the 
time derivative of flof20 must be generalized to include the change due to 
collisions, that is, 

Oflo I Of2o I 
f---tfl~176 = - f2~176176176176176176  r + f l~  eoll (41) 

This arises naturally from the first BBGKY equation (3) written in a form 
to emphasize the collisional rate of change 

~f~') Pl COf~I) I_cof~l) (42) 
0t m r 1 at r 

or more directly from the collision term of the standard Boltzmann 
equation (22). Introducing this into Eq. (29) for A~ gives 

homog Al~-Ai  + A~ (43) 

with the inhomogeneous contribution given by Green's 15) form A~ while 
the homogeneous contribution is 

~jho.,o,=(to-t)( of'~ f2o+f,o OA~ 
l k cOt leon cOt =on/ (44) 

It should be clear, but is to be emphasized, that the collisional rate of 
change, for example, for f~o, is to describe how f~o changes with time due 
to binary collisions with other molecules in the gas, particle 2 not being 
responsible for this change, so that this is NOT to be considered as a three- 
particle collision between particles 1, 2, and some other particle. Essentially 
f~) changes with time because collisions occur, and this effect must be 
taken into account as one of the consequences of a finite time of duration 
for a collision. Use of this combination for A~ when evaluating the J~ con- 
tribution to the equation of change for the kinetic energy implies that the 
kinetic energy production is the sum 

homog inhomog aK = aK + aK (45) 
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of the homogeneous contribution [compare Eq. (26)] 

homog 1 fOfl0 co, ' Of 2 o ) O'K = - - '2 f f f  VI2~ k Ot f2o+flo--~ co|! dr12dP12dp12 (46) 

and the inhomogeneous contribution, Eq. (40), derivable from Green's 
approximation. 

6. ON CLOSURES OF THE BBGKY HIERARCHY 

Bogoliubov's t4~ functional assumption states that the time dependence 
of all distribution functions is governed through their functional dependence 
on the singlet distribution function. This functional assumption is stressed 
in most discussions (see, for example, refs. 9-11 ) of the generalization of the 
Boltzmann equation to higher density. But also needed is an initial condi- 
tion so as to complete the closure of the BBGKY hierarchy. Bogoliubov t4~ 
argues that the reduced distribution functions should factorize in the 
infinite past. For the Boltzmann equation, it is the factorization of the pair 
distribution that is relevant. To make use of this initial factorization, 
Bogoliubov introduces a comparison of time evolutions between isolated 
pair and free motions so that 

f<2)(rl,pl,r2, P2;t)=~12(rl,pl,r2, p2)ftl)(rl,pl;t)ftl)(r2, P2;t) (47) 

Here 

~12(rl, Pl, r2, P2)= lim e~"2'e -~'-'' (48) 
t ~ --oo 

contrast the motion of the interacting pair of particles with their free 
evolution from the infinite past. These evolutions are described by the pair 
Liouville operator 

~ 1 2  ~ ~ 1 2  - -  O 1 2  (49) 

given in terms of the pair free motion 

and interaction 

=-----+--. (50) 
m ar, m ar2 

av,2 ( a) ap, (51) 
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Liouville operators. Substitution of Eq. (47) into the first BBGKY equation 
(3) provides a closure of the BBGKY hierarchy at the one-particle level. 

~12 is a phase space transformation, with the result being equivalently 
expressed as 

f(2)(rl,  Pl, r2, P2; t) = f~l)(r' I , Plo; t)f(I)(r~, P2o; t) (52) 

where the momenta Plo and P2o are the same as introduced by Green (see 
Section 4), namely the momenta of the particles just before they begin to 
collide. The primed positions r'~ and r~ are obtained from r l and r2 by 
going back via a binary collision trajectory to a time before the particles 
started to collide and then forward an equivalent time via free motion. 
Thus they have the same center-of-mass position, but their relative position 
is given by 

r ' = r ~ - r ' l =  lim r 0 + g o ( t - t 0 )  (53) 
t 0 ~  - - c O  

In this way, an expansion of the position dependence of the product, 
Eq. (52), to first order in gradients is exactly as in Green's treatment of the 
inhomogeneous gas, specifically 

f~2)(r~, Pl,  r2, P2; t) ~ flof2o + A~ + A2 (54) 

Because of the inherent limit in Eq. (48), there is no remaining time 
parameter t o and thus no way to indicate the time of duration of the colli- 
sion. Hence it is not possible to describe the conversion between kinetic 
and potential energy in a homogeneous gas using the closure (47). More- 
over, it appears to be inconsistent with total energy conservation, as is now 
displayed. 

With the use of Eq. (47), the Boltzmann equation is conveniently 
written 

a (1) +Of(, '~ 

= -Jg~tf]')+ffO,2~,zf]l)(t)f~t)(t)dr2dp2 (55) 

The rate of change of the total kinetic energy 

UK- ff  p~ f(~) ~mVl drldpl 
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is given according to this Boltzmann equation by 

OUx=ot ff 2m p~ Offer(t) drl dpl 

f p2 012~12f]l)f(2 ') drl"" dp2 
= ; " ' 3 2 m  

V12-~' 0 ~ <l ~rl  12f, )f(2 ' ) d r , ' ' ' d p 2  : I I  
'I 

. ~ _ . - -  . . .  

2 

'I 
~ - -  . . .  

2 

f rz 6 o  ~ r  I .dp 2 r 1 2 " t " 1 2  " - ' 1 2 . / 1  . / 2  " ' 

f vv> (12 (I) _~iz~2.1"i f2 drl...dp2 

1 0  
- 2 0 t f ' " f  r1-1"-"12./l ~- r  

{Of]l)( t) Of~l)( t) 
x ~ cof~,t)(t)+f]l'(t) Ot r d r l . . . dp2  (56) 

In deriving this set of equalities, the second equality involves integrating by 
parts with respect to each of rl, Pl, and P2. The third equality symmetrizes 
between the two particles and recognizes that the interaction term O12 can 
be introduced since on integration it contributes nothing. The fourth 
equality uses the classical analog 

~ 2 ~ , , _ =  ~ 1 2 ~ 2  (57) 

of the quantum scattering theory intertwining relation. Finally the first 
BBGKY equation is used for each particle to eliminate Y~zf~ 1)f~1) in terms 
of time derivatives. 

Thus Eq. (56) is an exact consequence of the first BBGKY equation 
and the closure (47). On identifying the first term in the last expression of 
Eq. (56) as (minus) the rate of change of the potential energy, it is noted 
that Eq. (56) implies that the total energy UK+ Uv is not constant and 
thus inconsistent with energy conservation. This must be the consequence 
of the closure (47) determining f~2 ) in terms o f f~  1) and f~2 I). There appear 
to be two ways to recover energy conservation. One way is to drop the 
collisional time rates of change in the first BBGKY equation when used in 
evaluating Y{'12f~)f~21) in Eq. (56). This could be argued as reasonable since 
~12 is obtained by contrasting interacting and free motion for the pair of 
particles. Essentially this treats the colliding pair as if they are completely 
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isolated from all the other particles in the gas, so the possibility of collisions 
with other particles should not be taken into account. For this method of 
obtaining consistency, energy conversion between kinetic and potential energy 
occurs only via spatial inhomogeneity; in particular no energy conversion 
occurs for homogeneous systems. This can be explicitly seen from the factor ~ 2  
f~ )  f(2 ') in the fifth equality in Eq. (56), which vanishes unless f l  1) is position 
dependent, equivalently, unless the gas is inhomogeneous. An alternate way of 
recovering energy conservation is to consider the gas as essentially homo- 
geneous over the range of the collision. Then .,~12f~ l)f(2 l) is zero. In this case 
there is no energy conversion and kinetic energy is conserved. This is exactly the 
classic treatment of Boltzmann! A collision essentially occurs at one point in 
space and time as far as the macroscopic properties of the gas are concerned. 

It is concluded that the retention of an explicit dependence on the time 
of duration of a collision as in Green's iS) treatment has the advantage of 
being capable of describing in a consistent manner the binary collision con- 
version between kinetic and potential energies, in both homogeneous and 
inhomogeneous systems (see Secion 4). An alternate approach of obtaining 
consistency is to use Klimontovich's (~41 binary collision approximation for 
closing the BBGKY hierarchy. This is described later in this section. But 
first some comment is made on the quantum analog of the above equations. 

For the "derivation" of the quantum Boltzmann equation from the first 
BBGKY equation, the pair density operator p~2) entering into the collision 
term is expressed in terms of the singlet p(~) according t o  t2t-23) 

p~)(  t) = t2,2pll])( t) p(2')( t) (58) 

on the basis of the Stosszahlansatz. Here f2t2 is the Moiler superoperator, 
having a structure exactly parallel to Eq. (48). It should be remarked that 
inherently this expression involves a spatial nonlocality. Thus has been 
explicitly used (1) to account for angular momentum transfer between spin 
and translational degrees of freedom, and the same discussion includes a 
description of the conversion between kinetic to potential energies via binary 
collisions in the quantum Boltzmann equation. What should also be noted 
is that any constraints on nonlocality in Bogoliubov's form for the classical 
Boltzmann collision term are also applicable to the standard quantum 
Boltzmann equation since the latter is based on Eq. (58). In fact, the pre- 
vious work (], 2) on energy conversion by the quantum Boltzmann equation 
provided motivation for examining the classical case. But it was not 
recognized that energy conversion in a homogeneous gas was inadequately 
described in that work. Inherently the Moiler superoperator t2. has no time 
dependence, so the collision duration time does not enter the formalism. This 
apparently is the reason for not being able to describe energy 

822/80/5-6-12 
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conversion via binary collisions in homogeneous gases. It may be possible 
to adapt Green's c5) treatment to the quantum case and consider a finite- 
ranged potential with a finite collision duration time, but to the author's 
knowledge this has not been explored. Alternately, Boercker and Dufty O6) 
introduced a "binary collision approximation" for closing the quantum 
BBGKY hierarchy which appears to be analogous to Klimontovich's "4) 
classical method, but without the mean-field terms that Klimontovich 
introduces to account for long-ranged (in particular, Coulombic) forces. 
A recent paper by Dufty and Boercker (24) emphasizes that their binary 
collision approximation conserves total energy. Here it is verified that the 
classical analog of their binary collision approximation does conserve total 
energy. This approximation also provides a means of expressing the pair 
distribution function in terms of the singlets in a way that is consistent with 
total energy conservation; see Appendix B for the detailed form. 

Klimontovich (t4) expresses his "binary collision approximation" in 
terms of correlation functions instead of the corresponding distribution 
functions. Here the classical analog of the quantum theory of Boercker and 
Dufty O6) is followed. Phrased in classical mechanics, their binary collision 
approximation assumes that the term responsible for interaction with a 
third particle in the second BBGKY equation 

~f~2) ~ /'(2) ~f Its' 23 ) J I 2 3  Ot ,zJ]2 + (O13+~  ~ r(3) dr3dp3 (59) 

can be approximated according to 

yf (Ol3+~ ~ r dr3dp3~ ff t~ r  c(2)ctl))dr3dp 3 " / 2 3 / J 1 2 3  [ ~ 1 3 J 1 3  J 2  - -  v 2 3 J 2 3  J l  

={f(2l)~coll "~-f~l)Of(21-~) ~ Ot I colE} 

Here the collisional rate of change of a singlet has been denoted by 

Of~') ~oll=-ff Ol3f~23) dr3dpa=Of-~t---~) + (61) 

which, according to the first BBGKY equation [last equality in Eq. (61)], 
can be reexpressed in terms of the time and free motion properties of the 
ringlet, leading to the last form for Eq. (60). In a previous paper "s) it has 
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been rationalized that this method of implementing a "binary collision 
approximation" is to reflect the consequences of the previous collisions that 
particles 1 and 2 have just undergone before they start to collide with each 
other. But the net result is that the second BBGKY equation is replaced by 

( ~ +  .L~a~2) f~) ( / )  = ( ~  + ~e~2)f~1)(t)f~2~)(t ) (62) 

which together with the first BBGKY equation (61) gives a pair of closed 
equations for f (I) and f(2). The rate of change of potential energy is then 
predicted, according to Eq. (62), to be 

~ ( 2 )  OUr 1 vj x 2 . 

I [ 
= ~ ; ' ' ' f  V12 - - ~ 1 2 f ~  ) 

ffr,,a r t2)r( ,)a_~ r dp2 "~ [ ~ J 1 3 J 1 3  J 2  ~ ~ 2 3 J 2 3  J 1  ) " " " 

- O V 1 2  2 

= 2  "'" m c3rl 2 1. 

= f .. fPl.0Vl2c~2) drl . . .dp~ 
�9 J m Or12 ~'12 

2mJ" 8r12 ~ i "'" d P 2  

p2 
f f 1 0 t " (2 )  = - - J ' " J ~ m  12s12 drl""dP2 

ou~ 
- ( 6 3 )  

" a t  

Use has been made of various integrations by parts as well as Eqs. (.60) and 
(61). This completes the proof that the "binary collision approximation" 
closure of the BBGKY equation as expressed by Eq. (62) is consistent with 
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total (kinetic plus potential) energy conservation with binary collisions 
providing the mechanism for the conversion between kinetic and potential 
energy. Equation (62) provides a relation between ft2) and f~l~ which can 
be solved to express ft2~ in terms of f t  i). Such a result is interesting since 
it shows at least one way in which Eq. (47) can be modified in order to 
make it consistent with energy conservation. This calculation is presented 
in Appendix B. 

7. D I S C U S S I O N  

There appear to be two different philosophies for "deriving" the 
Boltzmann equation from the BBGKY hierarchy. To emphasize the 
differences, these are discussed in turn: 

(a) Following Boltzmann's original arguments that a pair of particles 
entering into a collision are statistically independent, Green tS~ starts with 
the first BBGKY equation and then explicitly uses isolated binary collision 
dynamics to relate the pair distribution function in terms of the singlets just 
before the collision begins, Eq. (28). The author's quantum Boltzmann 
equation was "derived ''c2'~ with the same philosophy, namely that a specific 
form for the pair density operator is introduced which is valid while the 
pair of particles are colliding. That form for the pair distribution function 
(or quantally, for the pair density operator) is appropriate only while the 
particles are colliding and not generally valid if the particles are not in the 
process of colliding. Specifically, neither does the integration over the 
coordinates of particle 2 give the singlet [as required by their definitions, 
Eq. (2)], nor does it satisfy the second BBGKY equation, nor for that 
matter the pair Liouville equation without further restrictions. A resolution 
of the normalization problem has been discussed t2~ while introducing a 
density-corrected quantum Boltzmann equation. Since the evaluation of the 
mean potential energy density requires the general form for the pair dis- 
tribution function, it is perfectly valid to use the second BBGKY equation 
to get the formal rate of change of potential energy, and then after the 
expression for the potential energy production is identified as involving 
collision processes, the form for the pair distribution function, Eq. (28), can 
be used in the evaluation of the potential energy production. In this way, 
energy conservation is obtained. In summary, the consistent treatment of 
energy conservation really arises from the exact equations of change for the 
kinetic and potential energy as given in Section 2, and only if the detailed 
evaluation of the conversion rate is desired, is Eq. (28) needed. Three 
different levels of treating energy conversion in a consistent manner can be 
recognized; these involve treating the position and time dependence of the 
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singlets in Eq. (28) in the following ways: (i) Local collision approxima- 
tion; by this is meant that only the first term in Eq. (28) is retained. This 
gives the (original) local Boltzmann equation and no conversion between 
kinetic and potential energy. (ii) Spatial nonlocality; any time nonlocality 
is interpreted in terms of spatial nonlocality (see Section 4). This is the 
approach used by Green ~5~ and by the author ~s) for density corrections to 
the transport coefficients. Energy conversion has also been discussed (~'2) 
for quantum systems within this same approach. (iii) Full time and spatial 
nonlocality. This allows energy conversion both in homogeneous and 
inhomogeneous gases; see Section 5. This approach has not been presented 
before, to the author's knowledge. 

(b) According to Bogoliubov's functional assumption/4) the pair dis- 
tribution function is a functional of the singlet distribution function and all 
time dependence of the former is determined through this functional. If 
such a philosophy is taken literally, this implies that the combination of the 
first BBGKY equation and the functional equation constitute a complete 
closure of the BBGKY hierarchy, equivalently that none of the higher 
members of the hierarchy are to be considered. It is this philosophy which 
is behind labelling Section 6 as being devoted to closures of the BBGKY 
hierarchy. Two specific closures limited to treating binary collisions are 
discussed in that section. Equation (47) is the first closure discussed. It is 
shown there [see Eq. (56)] that this closure is generally inconsistent with 
energy conservation. If the further constraint is made that the collision is 
local, the kinetic energy is conserved and the original Boltzmann equation 
obtained. Discussions of the general equations of change (see in particular 
ref. 10) often refer to Bogoliubov's functional assumption and the closure, 
Eq. (47). But in carrying out such calculations they appear to follow the 
same procedure as discussed in the previous paragraph, namely they use 
both the first BBGKY equation to describe the rate of change of kinetic 
energy and the second BBGKY equation for the potential energy. In this 
way they appear to violate the concept that the functional assumption is to 
determine the pair distribution function and replace the second BBGKY 
equation. Consistency in energy conversion effectively corresponds to 
approach (ii) in the previous paragraph since Eq. (47) is equivalent to 
describing all nonlocal aspects of the collision process in terms of spatial 
inhomogeneities. In contrast, a consistent closure of the BBGKY hierarchy 
is the "binary collision approximation" of Klimontovich 1~4~ and Boercker 
and Dufty. (16~ ,~ strict use of the first BBGKY equation and Eq. (62) is 
consistent with total energy conservation; Correctly this pair of equations 
is more general than the Boltzrnann equation. A solution of Eq. (62) for the 
pair distribution function in terms of the singlet is given in Appendix B, 
which inserted into the first BBGKY equation formally gives a closed 
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equation for the singlet. But the result involves the complete past history 
of the singlet, so it constitutes a generalization of the Boltzmann equation. 
Appendix B also shows how the form for the pair distribution function dis- 
cussed in Section 5 is produced as an approximation to the form deduced 
from the binary collision approximation. 

Some comment was already made in Section 3 about the density 
dependence of the various quantities that enter into the "derivation" of the 
Boltzmann equation. It is common to think of the singlet distribution func- 
tion as being first order in the density, and collision processes as being 
second order. This association is correct at equilibrium for an ideal gas, but 
as soon as f ~ )  changes with time, due to a combination of streaming and 
collisional processes, there is an extra density dependence of f ~ )  that is 
associated with this evolution. As a consequence, the behavior of the low- 
density gas is not adequately described by expanding all quantities as 
power series in the density. The governing kinetic equation, the Boltzmann 
equation, is similarly affected. Since f~l) is in general a very complicated 
function of the density (often of exponential decay form), it might be more 
useful to think of the Boltzmann equation as the result of expanding the 
Liouville equation in powers of the singlet distribution function rather than 
of the density. 

Even after deciding to restrict the description of a low-density gas to 
retaining only binary collisions with a molecular chaos assumption deter- 
mining the state of the particles before they enter into collision, there is still 
the question of assigning a macroscopic position and time to a particular 
collision process. Boltzmann's original assumption was that the collision is 
local, equivalently that it occurs macroscopically at one position and time. 
Essentially there is then a complete separation of time and distance scales 
between macroscopic (fluid) properties and microscopic (collisional) pro- 
cesses. This is certainly a consistent scheme and nicely describes the proper- 
ties of a (relaxing) ideal gas. But if one starts to ask for density corrections 
to relaxation rates or transport coefficients, the nonlocality of the collision 
process is importafit. It has been well known that Bogoliubov's ~4) and 
Green's c5) method of accounting for collision nonlocality leads to correc- 
tions to the transport properties (see in particular ref. 8-12 and the 
literature cited therein). But the conversion between kinetic and potential 
energy via a classical Boltzmann equation has been seldom discussed, 
the major reference known to the author being that of KlimontovichJ ~4) 
According to Bogoliubov ~4) and Green, ~5) the collision nonlocality is always 
reduced to a position nonlocality and so depends on the inhomogeneity of 
the gas. Such position nonlocalities are irrelevant in a homogeneous 
system, but the conversion between kinetic and potential energy still can 
occur. This has been described in detail in Sections 3 and 5. Thus it is 
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seen that the time nonlocality is not completely reducible to a position 
nonlocality, so in general both effects need to be taken into account. 
It does appear that a truncation of the nonlocality to include only the 
inhomogeneous terms gives a consistent scheme, but has something been 
lost? Such a truncation is also quite appealing since it has the appearance 
of being an expansion of the kinetic equation to retain only terms second 
order in density. But as emphasized above, this is illusory since the density 
appears in all of the time dependence of the (singlet) distribution function. 
Retaining both inhomogeneous and homogeneous nonlocality corrections 
to the Boltzmann equation appears to be consistent with the inclusion of 
all binary collision processes, but seems to be of higher order in the density 
since the homogeneous term involves the effect of a binary collision rate for 
one particle while the other particle is a spectator. Care must be exercised 
in interpreting this formula. The present work emphasizes that these (spec- 
tator) collisional rates of change reflect how the distribution function 
changes with time because of the accumulation of binary collision processes 
rather than that all three (or more) particles are simultaneously colliding. 

Finally one should comment on the fact that an experimental 
measurement can select the density range in which the measurement is 
carried out, but cannot select that only binary collision processes are of 
importance. It is well known that there are other effects besides the nonlo- 
cality of the binary collisions that contribute to density corrections to, for 
example, transport processes The best present theory, C12) in that it gives the 
best agreement with measured transport virials, takes into account in an 
approximate manner the presence of bound states and three-particle colli- 
sions as well as the binary collision nonlocality. This paper has examined 
only one related aspect of this whole question, namely how kinetic and 
potential energies are interconverted via binary collisions, with possible 
ramifications as to how the nonlocality of the binary collisions should be 
treated. There is, on the other hand, a need for a concerted theory includ- 
ing all effects (collision nonlocality, bound states, and triple collisions), 
which would have the advantage of clarifying if and how these different 
effects influence each othe'r. 

A P P E N D I X  A. A S P E C T S  OF B I N A R Y  COLL IS ION D Y N A M I C S  

In an isolated binary collision, any function F of the positions and 
momenta of the pair of particles satisfies the pair Liouville equation 
[Eq. (4) without the three-particle terms]. Those functions I that are also 
time independent are collisional invariants in that they have the same value 
at every point of a collision trajectory. Since all center-of-mass motion is 
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trivially a collision invariant, it is sufficient to emphasize only the con- 
straints associated with relative motion. Specifically, then, a collisional 
invariant I must satisfy 

aV OI p OI 
. . . . . . .  (A.1) 
~r ap /~ ~r 

in terms of its dependence on the relative position r and momentum p. 
Given a particular relative position r and momentum p, these deter- 

mine a collision trajectory as well as where the particles are at along the 
trajectory. The trajectory is determined by five independent collision 
invariants. This leaves one variable to describe the progress-along the 
trajectory. Clearly the energy 

2 

E = ~ / t  + V(r) (A.2) 

and the three-dimensional angular momentum 

L = r •  (A.3) 

serve as four if the independent collision invariants. The direction of L is 
perpendicular to the plane of the collision trajectory, and so defines this 
plane. Outside the range r 0 of the potential (assumed for simplicity of 
presentation to be finite) the initial momentum Po must lie in the plane 
of the collision and have its magnitude determined by the energy, 
po = (2#E) 1/2. Its orientation within the plane of the collision provides a 
fifth independent collision invariant. The radial distance r is taken in this 
work as the variable parametrizing where the particles are along the colli- 
sion trajectory. This parametrization is unique provided it is also specified 
whether the particles are on an incoming, r . p  < 0, or outgoing r .p  > 0, 
part of the trajectory. 

Clearly any collisional invariant can be rewritten as a function of the 
five independent collisional invariants E, L and the orientation of Po within 
the plane of the collision. In particular, the initial relative momentum Po as 
well as the individual initial momenta Pio and P2o are combinations of the 
five independent collisional invariants. So is the impact parameter b = L/po. 
Another collision invariant is the distance of closest approach ~0, which is 
the largest root of E =  V(~0)+ L2/21z~ 2. The time t o at which a collision 
begins is identified here as the time when the particles are a distance ro 
apart and on the incoming part of the trajectory. Standard integration of 
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Newton's equations give to in terms of the time t at which the particles 
were at r, p according to 

t - - t o = - -  ~ o[E_V(~)_L2/(21x~2)] , l  2, r.p~<O 

\2) J,o [ E -  V(O-L21(2/x~2)] '/2 

+ o [ E -  V(~)--L2/(2fl~2)] 1/2' r . p > 0  (A.4) 

E, L, and ~o are all collision invariants. Thus t -  to is a function of colli- 
sional invariants as well as a function of the position r which parametrizes 
where along the collision trajectory the particles are to be considered at 
phase point r, p. It follows that at constant E and L 

E,L  p . r  

This is used in the evaluation of Eq. (26). 

APPENDIX B. THE PAIR DISTRIBUTION FUNCTION 
ACCORDING TO THE BINARY COLLISION 
A P P R O X I M A T I O N  

The binary collision approximation as introduced by Boercker and 
Dufty 116) for quantum systems and by Klimontovich ~14) for classical 
systems including mean-field forces implies, for classical systems and 
dropping the mean-field effects, Eq. (62) as a relation between the singlet 
f~l~ and pair f12) distribution functions. This appendix solves this equation 
in order to express the pair distribution function in terms of the singlet. 
The result is found to involve the memory of the complete time history of 
the singlet. Its importance is that Eq. (62) provides one way of closing the 
BBGKY hierarchy in a manner consistent with the binary collision conver- 
sion between kinetic and potential energies. 

An immediate integration of Eq. (62) between times t' to t gives 

(1) (I)  (1 f , 2 ( t ) = f  l ( t ) f 2 ) ( t ) + e - a " : " - " l [ f ~ , ~ l ( t ' ) - - f ] ' l ( t ' ) f ~ i ' ( t ' ) ]  

-7- f,', o,j , (B.I) 

According to this expression, the value of f~2) at time t depends on the 
whole time history of f~'l and some initial condition at t'. An appropriate 
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initial condition is to take t ' - -+ -  oo and assume that the pair density 
operator factors into a product of singlets in the infinite past. This follows 
the original treatment of Boercker and Dufty. (16) As discussed in ref. 15, 
this time can be considered as the time at which the gaseous system was 
initially set up for observation. But independent of interpretation, this 
determines a unique pair distribution function in terms of the singlet 

I' f~22)(t)=f~l)(t)f~lJ(t)+ e-W'2~ " (B.2) 
- - c o  

To connect and compare this result with Bogoliubov's form, (4~ Eq. (47), for 
the pair distribution function used to obtain the Boltzmann equation, the 
integrated form of the first BBGKY equation 

f~l)(t")=e-#:"t"-')f~i)(t)+ ::"e -or"' ..... ) 0f~i>(s) ds (B.3) 
C~S coll 

can be used to give the time dependence of the singlets in the t" integral. 
Here the collisional rate of change of the singlet is given by Eq. (61), in 
particular it is determined by the properties of f~  l)(s). Substituting this into 
Eq. (B.2) for both singlets leads to a complicated expression involving three 
separate types of terms, being of zeroth, first, and second order in the 
collisional rate of change of the singlets. In each case it is possible to 
analytically integrate over t". After recognizing the limit of the product of 
interacting and free evolution operators as ~ 2  and reorganizing the 
remaining integrals, the result can be written 

(2) (i) (2) f l 2 ( t ) = ~ 1 2 f l  ( t ) f  2 (t) 

f'_ { e -  ar"~ f ]  ')( t) Of~2')(s) co ds [ e -  w'20-~) ear'~~ - ~12] Os ~on + 

+ e-"<'-"f~')(t)Of~')(s______~) l 
as IconJ 

-- f'_co ds f'-o~ ds' [e-Z'~-~'-"le ~r'2~'-'~- ~t2 ]  

fe-~C,o-.)e-~r~.-~', Of~')(s) Of~2')( s' ) 
x [ Os ~oH Os' co i l  

( I )  ,' + e_~r,,,_,.,)e_~2ft_,>c3fi (s)10f~21--~)(s) "~ (B.4) 
Os' Icon Os IconJ 

This shows that the pair distribution function deduced from the binary 
collision approximation gives the Bogoliubov closure plus corrections 
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associated with the collisional rate of change of the singlets. As it must, this 
equation for the pair distribution function satisfies Eq. (62), so that it is 
consistent with total energy conservation, including both inhomogeneous 
and homogeneous contributions for the conversion between kinetic and 
potential energy: Possibly there are simpler ways of writing this result and 
possibly there are alternate, simpler forms for the pair distribution function 
that are consistent with total energy conservation. 

Equation (B.4) gives the pair distribution functions as having the 
Bogoliubov closure, Eq. (47), plus corrections associated with the collisional 
rate of change of the singlet. Recognizing that the leading term includes the spa- 
tial gradient corrections to the purely local expression for the pair distribution 
function in terms of singlet distribution functions, a comparison with the 
general expansion, Eq. (28), of the pair distribution function for a finite-ranged 
potential using in particular Eqs. (43) and (44) suggest questioning whether 
there is a connection between these two forms. This is indeed the case, as is now 
demonstrated. On the basis that the collisional rate of change is slow, 

can be approximated by 

-- .Xgl (t . . . .  ) o f ~ l  )(,5,) 

e as coil 

, ,  

e at coil 

and an expansion of the integral in Eq. (B.3) gives 

f~ '~ ( t " ) '~e -JC ' "  . . . .  ' { f~' '(t)+(t '-t)Of~' '(t)Ot ~o,,J~ (B.5) 

Substitution of this into Eq. (B.2), truncation to keep at most linear terms 
in the collisional rate of change, recognizing that the lower limit of the t" 
integral can be set at the (finite) collision starting time to for the finite- 
ranged potential, and integration by parts leads to 

i' f~2)(t ) -- (') (,) e - -~ , , . , - , " )O . - , )  - - f l  ( t ) f2  ( t )+  12 e-~'2c' 
0 

x ]' )(t) f~l)( t )  -- (t -- t") 0 - ~  r 

f ~r 4"(111 ) 
= ~ ] 2  (I) (]) 1 ( t ) f2  ( t ) - - ( t - - t ) w  I J2  k 

0 - - - W - o o J  

+ ~' e- '~"-( ' - t")e -at '2( ' ' - ' )  dt" Of]l)fc21)-- (B.6) 
",o 0 t I ~ou 
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In evaluating this result it has been recognized that for a finite-ranged 
potential the limit in Eq. (48) is unnecessary; it is only necessary to go back 
to the time t o at the start of the collision from the present time t. Thus the 
appropriate phase transformation is related to the (negative) time interval 
t o -  t, so that 

12 = e A"12(t~ t)e - .x, qz(to - t) 

Since the integral in the last term involves oscillating exponentials, a 
reasonable approximation is to assume that the integral vanishes. Since ~ 12 
replaces the two-particle momenta by their binary collision initial values, 
Eq. (B.6) contains the same first-order corrections to nonlocality as does 
Eq. (28) provided the homogeneous correction term as discussed in Section 
5 is included in the latter. In conclusion, the binary collision approximation 
gives the same first-order corrections to the local Boltzmann equation as 
does Green's method as long as the latter includes as a contribution the 
collisional rate of change of the singlet. 
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